Time Series Prediction of the Western Sports and
Recreation Centre Attendance Using Long Short
Term Memory

Colin Brown
Department of Computer Science
Western University
London, ON
cbrow388@uwo.ca

Abstract—In this paper, I will investigate the usefulness of a
long short-term memory (LSTM) model for time series prediction
that aims to forecast the attendance of people in the Western
Sports and Recreation Centre (WSRC) third floor weight room.
Taking as input 5 hours of weight room (WR) attendance, the
model can forecast the rest of the day’s attendance, allowing
for updated forecasts to be made as the day progresses. I will
compare this model against two other models. The model is
good at predicting days that are close to normal, but days that
deviate strongly from the normal cause it to predict that the day
will gradually return closer to the normal rather than remain
abnormal.

Index Terms—long short term memory, time series analysis,
recurrent neural networks, deep learning, prediction algorithms

I. INTRODUCTION

Toward the end of my third year of university, I started regu-
larly going to the gym on campus. I eventually learned that the
staff post half-hour updates of the live attendance statistics on
Twitter/X (@WesternWeightRm) about the number of people
in three different sections of the gym, the weight room being
the busiest and the one that concerned me the most. After
discovering this helpful data, I initially found it difficult to
tell whether ”80” in the weight room meant it was busy or
not because I had no frame of reference for that number. So, I
wrote a script to scrape as much of their tweet data as possible
and then graph it.

After I had done that, I ended up with a month and a half
of tweet data to graph. I used Excel to sort them by month,
then day of the week, then hour, and then averaged all the
values in each hour. I kept up with this during my fourth year
and accumulated almost 12 full months of gym attendance
data, see Fig. 1. A clear pattern could be seen in the data
I had collected. I called this my day of the week average
(DotWA) model. It has seven day of the week predictions
for every month of the year, coming to 84 predictions total.
However, I still found this method of checking the busyness
insufficient. I could check a few tweets from the Twitter/X
page and then compare the numbers to the spreadsheet to see
if it was normally busy or abnormally busy, but that did not
really help me figure out what it might look like later in the

day if things changed or were abnormal, a prediction model
is what I wanted.

160

140

6:00 7:00 8:00 9:00 10:00 11:00 12:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00
AM AM AM AM AM AM PM PM PM PM PM PM PM PM PM PM PM

Monday Tuesday Wednesday Thursday e Friday Saturday e Sunday

Fig. 1. A portion of the DotWA model. This shows the months September to
April combined for the weight room attendance for a given day of the week.

Research objectives and result. I set out to create an
efficient time series prediction model. This desire of mine
presented me some issues; I would need a lot of data to train a
machine learning model, there are many aspects of university
life that impact how busy the gym is, and there are many
models for time series analyses that could work. To implement
the model, I needed to format my data in a way that the model
can digest, develop a script to train many models and save the
best one, another to test the model’s efficacy, and a third to
run a user defined input through the model and display the
prediction. I compiled lots of data, over 55 000 tweets from a
span of more than 10 years, and knowing that recurrent neural
networks (RNNs) work well with processing lots of sequential
data, I tried one of those for the architecture of my model. I
found that a long short-term memory (LSTM) model was great
at making the predictions I was looking for with my weight
room data. It preforms better than my averaged data as it can
forecast based on previous inputs.

Impact of results. This research further proves the ef-
fectiveness of LSTM models on time series analysis and
prediction. The model could be used by the WSRC to better
communicate with students what to expect if they plan to

attend the gym on a given day. It could also be provided
directly to students to input any day in the future of their
choosing to see what it might be like.

Structure of paper. In the first part of this paper I will
discuss how LSTM models work and what makes it a good
choice for my use case. After that I will discuss some time
series prediction models, their upsides and downsides, and will
use one to compare my results with. In the second part of this
paper I will outline the objectives of my implementation, how I
accomplished them, and discuss problems I encountered. In the
third section I will present the results of my implementation,
how they compare to other models, and patterns I observed.
Finally, I will consider use cases and improvements of my
result.

II. BACKGROUND AND RELATED WORK

In this section I will discuss the LSTM architecture further,
outlining its benefits, its downsides, and how it works. I will
also discuss some other related work to time series forecasting
involving weather and the WSRC.

A. LSTM Architecture

Knowing I wanted my model to be able to handle sequential
data well, a RNN made sense for me as they are a fundamental
linear data structure [1]. But, concerned with the issues of
other conventional RNNs, a LSTM model is beneficial for
a couple reasons. Short-term memory is meant for saving
representations of the latest events and long-term memory
is exemplified by gradually shifting weights. LSTM models
make the best of both [AAA]. Additionally, in a LSTM model
there is no occurrence of the vanishing gradient problem seen
in other conventional RNN models [2]. This is the reason the
architecture is the basis for many state-of-the-art models in
literature [3]. The vanishing gradient problem occurs when
gradients become extremely small and vanish as they “flow
backwards in time” to the other layers in the model [2].
Gradients propagate back in the model to improve the output
of the layers and connect them for sequential analysis. The rate
at which they propagate depends on the size of the weights
[2]. Another problem for some RNNs is that the gradients
could oscillate, changing direction or sign frequently and
significantly from layer to layer [2]. LSTM models overcome
these errors and can bridge time intervals of more than 1000
steps by using a gradient-based algorithm which implements
a constant error flow through the internal states [2].

There are three inputs to a LSTM cell, refer to Fig. 2.
The current input, represented by x, is the data at the current
time step t. It is a vector representing the information the
LSTM should process at a specific moment. The previous
hidden state, represented by h;_1, is a vector representing
the information the model has learned from the previous time
steps in the sequence. It is essentially the memory of the
past relevant to processing the current input and makes up
the short-term memory for the model. The previous cell state,
represented by c;_1, is another vector that represents the long-
term memory of the cell. Unlike the hidden state which often

carries information about the recent past, the cell state is
designed to retain information over longer sequences. For the
outputs of a cell, the current hidden state, represented by hy,
is the main output of the cell at time step ¢. It’s a vector that
contains information about the current input and the influence
of the past. It is what make the prediction at the current time
step and is also passed to subsequent layers. The current cell
state, represented by c;, is the updated long-term memory of
the cell that will get passed to the next cell. It could have
some information added or removed from the cell state given
by the previous cell [2].

h

Copi ——— X >

I *
O O ta1;1h l
I 1 1.0 .,

Nea

a

Xt

Layer Pointwize op Copy

Legend: 3

Fig. 2. LSTM cell. This visualization is freely available and is licensed under
the CC-BY License, by Guillaume Chevalier. [CCC]

To account for the need of long-term and short-term mem-
ory, lots of data is needed for LSTM models. The architecture
is “designed to allow the network to learn much longer-range
dependencies” [3]. If there is not enough data, then a LSTM
model will not be useful, as it is likely to overfit to the
training dataset and not be efficient on unseen data. Other
kinds of classical methods of models, such as autoregres-
sive integrated moving average (ARIMA), simple exponential
smoothing (SES) and moving average (MA), would be more
efficient on data sets that are smaller [3]. As my training
dataset ended up being comprised of 36 036 tuples, I am not
concerned with this shortcoming.

B. Weather Forecasting

Lots of work has gone into the problem of time series
forecasting for its many use cases. Weather, economics, stock
market analysis, energy consumption, and more are all im-
portant applications of time series forecasting that have seen
great impact on how they are being accomplished in recent
years [4]. As better models are created, more overall data is
collected, and overall compute power becomes greater, time
series forecasting is only going to become better and more
widespread.

Weather forecasts are a time series forecast that everyone
uses just about every day. However, most current forecasts
found on a weather app are made with physics-based models

that perform vast sums of mathematic calculations on real-
world data inputted into supercomputers. Despite this, there
are lots of companies working on new machine learning
models. GraphCast, developed by Google DeepMind, is one
that has seen lots of promise. It has proven to perform on par
with, or better than, the best physics-based models 90 percent
of the time [5]. In one case, it predicted the path of Hurricane
Lee three days before traditional models. Additionally, these
machine learning models are much faster than physics-based
models, creating a weather forecast in a couple minutes rather
than two to three hours [5].

There are some issues with these new forecasting models.
They are best at predicting widespread systems rather than
localized weather. GraphCast works on 28 square kilometre
chunks of the Earth [5]. This limitation reduces its effective-
ness at predicting storm and rainfall intensity [6]. As well,
because it is trained on historical data, a changing climate may
reduce its effectiveness. Rare and never-before-seen events are
unlikely to be predicted by a model of this kind. Furthermore,
because of the black-box nature of machine learning models,
there is no way to tell how the model arrived at a forecast in
the same way physics-based models do. There is little way to
determine a specific issue and fix it to improve the model.
These models also can only produce one forecast without
probabilities, something we are very used to with our current
forecasts [5].

Weather forecasters currently see these new models as an
additional tool to consider when making their forecasts. It is
unlikely that that they will replace current methods in the
coming decade [5].

C. WSRC Forecasting

A case where time series forecasting was implemented on
the WSRC in the past is with Western Gym Monitoring by
Robot, also known as, GyMBRo. This was a boosted tree
model that used LightGBM, developed by Demetri Pananos
in late 2019. It was used to predict the number of people at
the gym for each hour of a given day. Twice every hour, the
program would post on Twitter/X a graph with a prediction
line and plot points of the attendance actually being observed,
see Fig. 3. Pananos did not publish a loss calculation for
the model, but from my observation, it seems to often do
quite well with its predictions before it was shutdown in
April of 2023. Some days a very noticeable deviance from
the prediction and observation can be seen, especially with
summer predictions or days just after holidays. Pananos notes
that what improved the model the most in their feature
engineering was features for holidays. One for the holiday
coming up, one for how many days until the holiday, and
another for if it is currently a holiday. It was also noted that
weather data was not found to be useful for predictions [7].

III. METHODS

In this section I will discuss the objectives for the imple-
mentation of my model and how I achieved each.

© Observed WR Numbers = Predicted
1501
=
o
o
o
£ 100
=y
T}
=
=
© 501
g o
(]
o
O 4
9 AM 1PM 5PM 9 PM
Time
Fig. 3. Prediction made by GyMBRo for April 18, 2023. Purple line is

boosted tree prediction, black circles are observed attendance plot points [8].

A. Research Objectives

The objectives I set out for in the implementation of my
model are as follows:

e O1: Collect lots of data so that the data expensive LSTM
model can accurately recognize patterns in the data and
better forecast a day’s attendance.

o 02: Feature engineer the data so that it is readable by the
machine for training, validation, and testing purposes and
provides the best information for prediction purposes.

e O3: Create scripts to train and validate a model, test it,
and use it to make a user defined prediction.

o O4: Create the best model with my engineered data by
fine tuning the hyperparameters that beats my DotWA
model.

B. Research Methodology

O1. For the collection of my data, I originally wrote a
python script to scrape the data on Twitter/X from @ West-
ernWeightRm. However, due to the API changes made in
February 2023, the free tier no longer has access to reading
tweets and can only post tweets. To get around this, I used a
Python package called Tweety-ns, a reverse engineered front-
end API that could scrape the most recent 800 tweets for
me. After continuously running that script for some months,
I ended up with 5746 tweets from May 2024 to April 2025.

While planning for the project, I reached out to the WSRC
and asked if they had any additional data, they got back to
me saying they only had the data I already had. Then, while
implementing the training script, I discovered the GitHub
repository for GyMBRo which contained an SQLite datebase
file containing 50 133 more tweets from @ WesternWeightRm
from January 2014 to April 2023 excluding COVID months
March 2020 to August 2022. After combining that with my
data, I ended up with 55 879 tweets to use to train my model.
I also used this data to improve my DotWA model.

02. For feature engineering, I first took this dataset and
added to it tuples with a zero WR value for times the WSRC
is closed, such as the morning, evening, and holidays only if

there was not a tuple for that hour already. Then, I transformed
my tuples from (YYYY-MM-DD hh:mm, WR value) format
to (year, month, week, day, hour, day of the week, WR value)
format where “week” is the week of the year out of 53 and
“day” is the day of the month out of 31. All attributes would
be an input, a WR value would be the only output. Next, so
as not to confuse the model with a year feature, I removed
it and combined any tuples with the same date features by
averaging the WR outputs together. I did not want there to
be multiple tuples with the same date features and different
associated WR values. Finally, I had a script group the dataset
by their date features and take 80 percent of the dates for the
training data. This set had 1337 different days and 36 036
tuples. Then, with the remaining 20 percent, I split the dates
evenly into two sets for validation and testing. For each of
dates in these datasets I ran a linear interpolation function
on them so there was no missing hours of data in case the
WSRC did not post data during an hour. This was so the loss
function would always have something to calculate for every
hour. These datasets each had 167 days in them; 3961 tuples
for validation and 4009 tuples for testing. In the end, I was left
with 44 006 tuples total for training, validation, and testing.

03. When creating my scripts, making the training script
train.py wasn’t too much of an issue. I referred to online
literature for guidelines on how to create the model with Py-
Torch in Python and what I could expect from the framework
and the model [9] [10]. The script has five hyperparameters.
These are the: number of neurons (HIDDEN_SIZE), num-
ber of layers (NUM_LAYERS), batch size (BATCH_SIZE),
learning rate (LEARNING_RATE), and sequence length (SE-
QUENCE_LENGTH). The total number of input features
(INPUT_SIZE) was 6.

To ensure numerical stability and improve model conver-
gence, all selected features were scaled to a [0, 1] range. A
separate MinMaxScaler was fitted specifically on the "WR’
column of the training data to prevent data leakage from the
validation set; this scaler is crucial for inverse-transforming
the model’s output back to the original "WR’ scale during
validation and prediction. The time-series data was trans-
formed into sequences suitable for LSTM input using a sliding
window approach. Each input sequence consisted of SE-
QUENCE_LENGTH consecutive time steps, encompassing all
selected features. The corresponding target for each sequence
was the scaled *"WR’ value at the subsequent time step (t+1).
Optimization was performed using the Adam optimizer with
a learning rate of LEARNING_RATE. Training utilized mini-
batches of size BATCH_SIZE using PyTorch’s DatalLoader,
which also shuffled the training sequences in each epoch to
improve generalization. Each training process would have 100
epochs, and I would save the model with the best loss rate on
the validation dataset. This model would then be tested with
the same loss strategy.

Validation and testing were what I knew would be an issue.
For them I used mean squared error (MSE) as my loss function
to disproportionately punish worse predictions greater. y; is the
observed WR value at hour :. g; is the predicted WR value at

hour ¢. n is the number of predictions made.

1 n o
MSE = - ;(yl)

Both the validation and test functions used the same method
to calculate a MSE value. Each would first pick a random
start hour at least SEQUENCE_LENGTH hours from the first
tuple for every date in their respective datasets. Then they
would input the previous SEQUENCE_LENGTH hours of
tuples into the model, iteratively predict the remaining hours
of the day, and calculate the MSE of those predictions and
the actual observed data in their datasets. I chose to do this
method because in reality, someone wanting a prediction could
choose any random start point in the day for their forecast
and I wanted the validation and test functions to mirror that.
Howeyver, because it was random, that meant the MSE value
I would get was not a concrete number for each dataset, and
could be higher or lower than the true MSE of the model. To
remedy this, I had the validation function run 5 times and the
test function run 50 times, each time averaging the sum of
the outputs. Along with the fact that the validation and test
datasets were quite large, I believe that my resulting MSE
would be roughly the true MSE according to the central limit
theorem.

O4. I trained the best possible model by isolating hyper-
parameters, changing them individually, and observing which
would lower the test MSE the most. Then, to calculate the
effectiveness of my DotWA model, I computed the MSE of
the DotWA model with the same test data I used to test the
LSTM model. For this, I had the MSE function test only
on predictions that were not zero so that the model did not
unfairly get lots correct predictions of zero WR attendance,
values that I entered manually in both sets, unfairly bringing
down its MSE.

IV. RESULTS
A. System requirements, architecture, and implementation

For all training, validation, testing, and predicting, I used a
ASUS ROG Zephyrus Laptop with 16GB of DDR4 SDRAM,
an Intel Core i7-11800H 8-core processor, and a NVIDIA
GeForce RTX 3060 Laptop GPU running CUDA version
12.6.85. Code was run in Visual Studio Code. See the attached
zip folder for the implementation and model. The PyTorch
2.6.0 framework was used for data preprocessing, model in-
stantiation, training loop, validation, and model saving. Scikit-
learn 1.6.1 was used for feature scaling.

B. Testing and Results

Testing different models revealed that a model with 64
neurons, 3 layers, a batch size of 128, a learning rate of
0.001, and a sequence length of 3 resulted in the best model.
This model has a MSE of 541.6 and a root mean squared
error (RMSE) of 23.3. The standard deviation of my WR
values is 47.2, a noticeable difference. As seen in Fig. 4,
the green model in the middle is the best model. To the left

and right of it, raising and lowering selected hyperparameters
in grey increased the Test MSE. The RMSE shows the average
difference between the prediction, ; and the true observation

Yi.-

RMSE =
Neurons 64 64 64 32 64 64 64 128 64 64 64
Layers 3 5 3 3 2 3 4 3 3 3 3
Batch size 128 64 128 128 128 128 128 128 128 256 128
Learning rate 5E-04 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005
Seq length 5 5 3 5 5 5 5 5 7 5 5
Validation MSE 620.8 631.6] 662.9 620.9 622.2 611.8 635.5 620.8 640.4 599.3 632.5
Test MSE 556.8 559.1 547.3 562.9 551.9 5416 646.3 574.6 572.6 589.4 696.1
Test RMSE 236 236 234 237 235 233 254 240 239 243 264

Fig. 4. Chart showing the validation and test MSEs and test RMSE of each
best model made from the corresponding hyperparameters. Hyperparameters
in green produced the best model. Grey hyperparameters differ from the best
model. Green MSE is lowest, red is greatest.

A surprising result I observed was that lowering the se-
quence length to three did not significantly increase the test
MSE. However, as this model had the highest validation MSE
value, I did not pursue it for further use in my predictions.

Initially I trained my model on the 5746 tuples that I had
collected before I got the additional 50 133 tuples. With that
smaller dataset, I also observed that the same hyperparameters
produced the best model, but it had a MSE of 991.3. The other
models of differing hyperparameters had MSE values ranging
around 1050 to 1150. This result further tells us that LSTM
models benefit greatly from larger datasets, and by increasing
my dataset, I reduced my best MSE by 45.4

When comparing the LSTM model to the DotWA model, 1
found that the LSTM model performs quite better on average.
Calculating the MSE of the DotWA model with the test data
resulted in a MSE of 752.2, an increase in MSE of 39.1%
when compared to the best LSTM model.

I also manually compared a few predictions from GyMBRo
to predictions of other models. Seen in Fig. 5 are predictions
for April 18, 2023. I chose this date because Tuesday April
18 is a point not in my training or validation sets. My model’s
predictions are marked with the ‘X’ points. The black line is
a full day prediction made at the start of the day and the red
line is a prediction made at 11lam with 5 hours of sequential
WR data input. It can clearly be seen that as the model is fed
information about the progressing day, the prediction moves
closer to the green target observed values. My forecast at 1 1am
has the best MSE of the 4 predictions made on the day. The
next lowest MSE was the DotWA forecast, and GyMBRo’s
forecast was the worst with a 414% greater MSE than the
11am LSTM prediction.

I consistently found that my LSTM model performed better
than the GyMBRo model on average, especially when my
model makes its prediction later in the morning when ob-
servations about the attendance have been made. However,

10 Gym Occupancy Predictions vs. Observed for 2023-04-18

--B- Target Observed WR (Available Hours)
—8— LSTM Input WR (Hours 7-11)
120 -x- LSTM Forecast WR (Hours 12-23)

-m. R
—¥- LSTM Forecast WR (Hours 6-23) .”,';;’:‘;A‘.ﬁ‘
DotWA Forecast WR oot / -

= 100 -8 S o SN B .

=1 g e -

S Sl

@ . 4 . m \

a 2 Sar / \5& |\

S 8 Sue—H St

5] \

F] '

E (W

S A

< (W

o 60 v X

=] [

o vl

=

z W

= 40 1
EN
A
‘L
"

20 Al

I I U I SR S S)

Hour of Day

Fig. 5. Graph showing four predictions made for Tuesday April 18, 2023. In
green/blue is the target observed values. In black is a LSTM prediction made
at 5am with only O valued input data (MSE: 456.2). In red is an updated
LSTM prediction made at 11am with five hours of observed input data from
7-11am in blue (MSE: 119.5). In orange is an average of Tuesdays in April
from the DotWA model (MSE: 294.3). Not graphed: GyMBRo (MSE: 615.2)
see Fig. 3.

because GyMBRo did not publish its testing results, I cannot
definitively confirm this.

Another observation I made is that if a day is abnormally
busy or quiet, the LSTM model tends to gravitate towards
an average later in the day instead of remaining at the same
abnormal difference of the input. This phenomenon can be
seen in Fig. 6 for March 30, 2023, another date not in my
training or validation datasets. The green observation line is
significantly above the orange DotWA prediction, showing
abnormality, however, when I input five abnormal WR inputs,
the model forecasts far lower than what occurs. The model
does correctly increase its prediction above the Sam prediction
for most of the day, but they both eventually trend toward a
similar WR value close to the DotWA line. For this day’s
prediction GyMBRo does very well, perhaps due to its extra
features as March 30th is near to the end of the term.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusion

Overall, I found that the LSTM model created is the
preferred model for forecasting the number of people in the
weight room at the WSRC. I was able to successfully collect
lots of data points and feature engineer them so that the model
performs noticeably better than the DotWA model in testing
and in general use. I observed that the LSTM model tended to
converge on a similar average despite its input. This is likely
due to its short-term memory gradient becoming diminished
in later cells as the prediction continues.

I confirmed that LSTM models perform better with more
data, as is discussed in literature [3]. With only a year’s
worth of data, the best trained LSTM model was not able
to outperform the rudimentary DotWA model.

Gym Occupancy Predictions vs. Observed for 2023-03-30

200

--M- Target Observed WR (Available Hours)

——8— LSTM Input WR (Hours 7-11) m.
175 e

—»- LSTM Forecast WR (Hours 12-23) -

—»- LSTM Forecast WR (Hours 6-23) ‘we W
150 DotWA Forecast WR - =

- n...
] e []

125 [x

WR Value (Number of People)
=]
=1

75 X “\
’)(\\\\
”)'(AN
50 L ‘\‘\
x ‘;t(
i’
% .
/
7
. *
I T T T IR T SO ol O

Hour of Day

Fig. 6. Graph showing four predictions made for Thursday March 30, 2023.
In green/blue is the target observed values. In black is a LSTM prediction
made at 5am with only O valued input data (MSE: 3112.8). In red is an
updated LSTM prediction made at 11am with five hours of observed input
data from 7-11lam in blue (MSE: 1331.2MSE). In orange is an average of
Thursdays in March from the DotWA model (MSE: 1921.5). Not graphed:
GyMBRo (MSE: 394.9) [11].

What is likely the best solution for forecasting the WR
attendance for students is a combination of an LSTM model
and another model, such as GyMBRo’s boosted tree model. A
prediction could be made with another model at the start of the
day when there is no observed attendance yet, as my start of
day predictions are weak. Then, as attendance is observed, a
transition to the LSTM model can be made for more accurate
predictions for the remainder of the day.

B. Future Work

As discussed by Pananos in his implementation of WRSC
attendance time series forecasting, GyMBRo, engineering fea-
tures for holidays turned out to be the most important features
improving the model [7]. Implementing a similar tactic in an
LSTM model may also produce great improvements in efficacy
and is something that could be investigated.

Additionally, overfitting could be an issue in my model.
Where there are days that have abnormally high or low
attendance rates, the model tends to gravitate towards a similar
average later in the day instead of remaining at the same abnor-
mal difference of the input. This could potentially be addressed
by the implementation of holiday features or perhaps other
features such as indicator variables for anomalous days.

Improvement in the testing and validation methods could
also be made. Whereas my model uses interpolated data
for MSE calculations, a method could be created to instead
calculate MSE exclusively on observed data, skipping un-
observed hours. However, that does lead to the case where
some hours may not be tested as often. Around closing time,
observations seem to become less common by the WSRC
staff. If observation and recording WR data for every hour
was addressed, this issue would be addressed sufficiently.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[9]

[10]

(11]

REFERENCES

G. Chevalier, “LARNN: Linear
Network,” Aug. 17, 2018, arXiv:
10.48550/arXiv.1808.05578.

S. Hocheriter and J. Shumidhuber, “Long Short-Term Memory,” Neural
Computation, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.

A. R. S. Parmezan, V. M. A. Souza, and G. E. A. P. A. Batista,
“Evaluation of statistical and machine learning models for time series
prediction: Identifying the state-of-the-art and the best conditions for the
use of each model,” Information Sciences, vol. 484, pp. 302-337, May
2019, doi: 10.1016/j.ins.2019.01.076.

M. Kolambe, “Forecasting the Future: A Comprehensive Review of Time
Series Prediction Techniques,” Journal of Electrical Systems, Apr. 2024,
doi: 10.52783/jes.1478.

L. Leffer, “Al Weather Forecasting Can’t Replace Humans—Yet,”
Scientific American. Accessed: Apr. 07, 2025. [Online]. Avail-
able: https://www.scientificamerican.com/article/ai-weather-forecasting-
cant-replace-humans-yet/

R. Schumacher and A. Hill, “Al and machine learning are im-
proving weather forecasts, but they won’t replace human experts,”
Colorado State Univerity Source. Accessed: Apr. 07, 2025. [On-
line]. Available: https://source.colostate.edu/ai-and-machine-learning-
are-improving-weather-forecasts-but-they-wont-replace-human-experts/
D. Pananos, GyMBRo. (Apr. 29, 2023). R. Accessed: Apr. 07, 2025.
[Online]. Available: https://github.com/Dpananos/GyMBRo
Western GyMBRo [@WesternGymBot], “Predictions
04-18,” Twitter. Accessed: Apr. 07, 2025. [Online].
https://x.com/WesternGymBot/status/1648470972880801796
A. Tam, “LSTM for Time Series Prediction in PyTorch,”
MachineLearningMastery.com. Accessed: Apr. 07, 2025. [Online].
Available: https://www.machinelearningmastery.com/Istm-for-time-
series-prediction-in-pytorch/

A. Anis, “How to apply LSTM using PyTorch,” Intel Tiber Al Studio.
Accessed: Apr. 07, 2025. [Online]. Available: https://cnvrg.io/pytorch-
Istm/

Western GyMBRo [@WesternGymBot], “Predictions
03-30,” Twitter. Accessed: Apr. 07, 2025. [Online].
https://x.com/WesternGymBot/status/1641576423377846275

Neural
doi:

Attention Recurrent
arXiv:1808.05578.

for 2023-
Available:

for 2023-
Available:

